Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
BMC Med ; 22(1): 153, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609953

RESUMO

BACKGROUND: Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. METHODS: From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. RESULTS: In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning (n = 109), internal test (n = 39), and external validation (n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. CONCLUSIONS: The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. TRIAL REGISTRATION: We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.


Assuntos
Inteligência Artificial , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico por imagem
2.
Chemistry ; : e202400527, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470123

RESUMO

Owing to distinct physicochemical properties in comparison to gold and silver counterparts, atomically precise copper nanoclusters are attracting embryonic interest in material science. The introduction of copper cluster nanomaterials in more interesting fields is currently urgent and desired. Reported in this work are novel copper nanoclusters of [XCu54Cl12(tBuS)20(NO3)12] (X=S or none, tBuSH=2-methyl-2-propanethiol), which exhibit high performance in photothermal conversion. The clusters have been prepared in one pot and characterized by combinatorial techniques including ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and X-ray photoelectron spectroscopy (XPS). The molecular structure of the clusters, as revealed by single crystal X-ray diffraction analysis (SCXRD), shows the concentric three-shell Russian doll arrangement of X@Cu14@Cl12@Cu40. Interestingly, the [SCu54Cl12(tBuS)20(NO3)12] cluster contains 8 free valence electrons in its structure, making it the first eight-electron copper nanocluster stabilized by thiolates. More impressively, the clusters possess an effective photothermal conversion (temperature increases by 71 °C within ~50 s, λex=445 nm, 0.5 W cm-2) in a wide wavelength range (either blue or near-infrared). The photothermal conversion can be even driven under irradiation of simulated sunlight (3 sun), endowing the clusters with great potency in solar energy utilization.

3.
J Colloid Interface Sci ; 665: 100-108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518422

RESUMO

Construction of inorganic/organic heterostructures has been proven to be a very promising strategy to design highly efficient photocatalysts for solar driven hydrogen evolution from water. Herein, we report the preparation of a direct Z-scheme heterojunction photocatalyst by in situ growth of cadmium sulfide on a triazine-based covalent organic framework (COF). The triazine based-COF was synthesized by condensation reaction of precursors 1,3,5-tris-(4-formyl-phenyl) triazine (TFPT) and 2,5-bis-(3-hydroxypropoxy) terephthalohydrazide (DHTH), termed as TFPT-DHTH-COF. Widely distributed nitrogen atoms throughout TFPT-DHTH-COF skeletons serve as anchoring sites for strong interfacial interactions with CdS. The CdS/TFPT-DHTH-COF composite showed a hydrogen evolution rate of 15.75 mmol h-1 g-1, which is about 75 times higher than that of TFPT-DHTH-COF (0.21 mmol h-1 g-1) and 3.4 times higher than that of CdS (4.57 mmol h-1 g-1). With the properly staggered band alignment and strong interfacial interaction between TFPT-DHTH-COF and CdS, a Z-scheme charge transfer pathway is achieved. The mechanism has been systematically analyzed by steady state and time-resolved photoluminescence measurements as well as in situ irradiated X-ray photoelectron spectroscopy.

4.
Eur Urol Oncol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38523018

RESUMO

BACKGROUND: Current approaches for diagnosis and monitoring of upper tract urothelial carcinoma (UTUC) are often invasive, costly, and not efficient for early-stage and low-grade tumors. OBJECTIVE: To validate a noninvasive urine-based RNA test for accurate UTUC diagnosis. DESIGN, SETTING, AND PARTICIPANTS: Urine samples were prospectively collected from 61 patients with UTUC and 99 controls without urothelial carcinomas, in five clinical centers between October 2022 and August 2023 prior to any invasive test (cystoscope or ureteroscope) or treatment. All samples were analyzed with a urine-based RNA test composed of eight genes (CA9, CCL18, ERBB2, IGF2, MMP12, PPP1R14D, SGK2, and SWINGN). The test results were presented with a risk score for each participant, which was applied to categorize patients into low- or high-risk groups. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The diagnosis of UTUC was based mainly on preoperative radiological examination criteria and confirmed by postoperative pathological results. The recursive feature elimination and support vector machine algorithms, χ2, and Student t test were used. RESULTS AND LIMITATIONS: The eight-gene urine test accurately detected UTUC patients and controls with an area under the curve (AUC) of 0.901 in a single-center testing cohort (n = 93) and an AUC of 0.926 in a multicenter clinical validation cohort (n = 66). In the merged validation cohort, the eight-gene urine test achieved high sensitivity of 90.16%, specificity of 88.89%, and overall accuracy of 89.38%. Remarkably, excellent performance was achieved in 11 low-grade UTUC patients with accuracy of 100%. However, this study collected the urine of UTUC patients only at a single preoperative time point and did not perform continuous tests during the pathological process of UTUC in the surveillance population. CONCLUSIONS: Our results demonstrated that the eight-gene urine test can differentiate accurately between UTUC and other urological diseases with high sensitivity and specificity. In clinical practice, it may be used for identifying UTUC patients effectively, leading to reduced reliance on ureteroscopy and blind surgery. PATIENT SUMMARY: In this study, we investigated a multiplex RNA urine test for noninvasive upper tract urothelial carcinoma (UTUC) diagnosis before treatment. We found that the risk scores derived from the multiplex RNA urine test differed significantly between UTUC patients and corresponding controls.

5.
MedComm (2020) ; 5(3): e501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38434760

RESUMO

This study aimed to evaluate the efficacy and safety of induction immunochemotherapy followed by definitive chemoradiotherapy (CRT) for unresectable locally advanced non-small cell lung cancer (LA-NSCLC). We identified unresectable stage III NSCLC patients who received induction immunochemotherapy. Overall survival (OS) and progression-free survival (PFS) were the primary endpoints. From February 2019 to August 2022, 158 patients were enrolled. Following the completion of induction immunochemotherapy, the objective response rate (ORR) and disease control rate (DCR) were 52.5% and 83.5%, respectively. The ORR of CRT was 73.5%, representing 68.4% of the total cohort. The median PFS was 17.8 months, and the median OS was 41.9 months, significantly higher than in patients who received CRT alone (p < 0.001). Patients with concurrent CRT demonstrated markedly improved PFS (p = 0.012) and OS (p = 0.017) than those undergoing sequential CRT. Additionally, those with a programmed-death ligand 1 (PD-L1) expression of 50% or higher showed significantly elevated ORRs (72.2% vs. 47.2%, p = 0.011) and superior OS (median 44.8 vs. 28.6 months, p = 0.004) compared to patients with PD-L1 expression below 50%. Hematologic toxicities were the primary severe adverse events (grade ≥ 3) encountered, with no unforeseen treatment-related toxicities. Thus, induction immunochemotherapy followed by definitive CRT demonstrated encouraging efficacy and tolerable toxicities for unresectable LA-NSCLC.

6.
Acta Neurochir (Wien) ; 166(1): 72, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329556

RESUMO

PURPOSE: Medulloblastoma is the most common childhood malignant brain tumor and is a leading cause of cancer-related death in children. Recent transcriptional studies have shown that medulloblastomas comprise at least four molecular subgroups, each with distinct demographics, genetics, and clinical outcomes. Medulloblastoma subtyping has become critical for subgroup-specific therapies. The use of gene expression assays to determine the molecular subgroup of clinical specimens is a long-awaited application of molecular biology for this pediatric cancer. METHODS: In the current study, we established a medulloblastoma transcriptome database of 460 samples retrieved from three published datasets (GSE21140, GSE37382, and GSE37418). With this database, we identified a 23-gene signature that is significantly associated with the medulloblastoma subgroups and achieved a classification accuracy of 95.2%. RESULTS: The 23-gene signature was further validated in a long-term cohort of 142 Chinese medulloblastoma patients. The 23-gene signature classified 21 patients as WNT (15%), 41 as SHH (29%), 16 as Group 3 (11%), and 64 as Group 4 (45%). For patients of WNT, SHH, Group 3, and Group 4, 5-year overall-survival rate reached 80%, 62%, 27%, and 47%, respectively (p < 0.0001), meanwhile 5-year progression-free survival reached 80%, 52%, 27%, and 45%, respectively (p < 0.0001). Besides, SHH/TP53-mutant tumors were associated with worse prognosis compared with SHH/TP53 wild-type tumors and other subgroups. We demonstrated that subgroup assignments by the 23-gene signature and Northcott's NanoString assay were highly comparable with a concordance rate of 96.4%. CONCLUSIONS: In conclusion, we present a novel gene signature that is capable of accurately and reliably assigning FFPE medulloblastoma samples to their molecular subgroup, which may serve as an auxiliary tool for medulloblastoma subtyping in the clinic. Future incorporation of this gene signature into prospective clinical trials is warranted to further evaluate its clinical.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Transcriptoma/genética , Estudos Prospectivos , Neoplasias Cerebelares/genética , China
7.
Vaccines (Basel) ; 12(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400158

RESUMO

The Omicron EG.5 lineage of SARS-CoV-2 is currently on a trajectory to become the dominant strain. This phase 2 study aims to evaluate the immunogenicity of SCTV01E-2, a tetravalent protein vaccine, with a specific emphasis on its immunogenicity against Omicron EG.5, comparing it with its progenitor vaccine, SCTV01E (NCT05933512). As of 12 September 2023, 429 participants aged ≥18 years were randomized into the groups SCTV01E (N = 215) and SCTV01E-2 (N = 214). Both vaccines showed increases in neutralizing antibody (nAb) against Omicron EG.5, with a 5.7-fold increase and a 9.0-fold increase in the SCTV01E and SCTV01E-2 groups 14 days post-vaccination, respectively. The predetermined statistical endpoints were achieved, showing that the geometric mean titer (GMT) of nAb and the seroresponse rate (SRR) against Omicron EG.5 were significantly higher in the SCTV01E-2 group than in the SCTV01E group. Additionally, SCTV01E and SCTV01E-2 induced a 5.5-fold and a 5.9-fold increase in nAb against XBB.1, respectively. Reactogenicity was generally mild and transient. No vaccine-related serious adverse events (SAEs), adverse events of special interest (AESIs), or deaths were reported. In summary, SCTV01E-2 elicited robust neutralizing responses against Omicron EG.5 and XBB.1 without raising safety concerns, highlighting its potential as a versatile COVID-19 vaccine against SARS-CoV-2 variants.

8.
JPRAS Open ; 39: 271-277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38370001

RESUMO

Background: Traumatic injuries to the lower extremities are frequently accompanied by extensive soft tissue loss, combined with vascular damage or exposure of bony tissues, making it difficult to reconstruct; consequently, patients are commonly at risk of amputation. Due to its superior anatomical and biochemical properties, the omental flap has been used to reconstruct soft tissue defects for decades. However, few studies have reported the omental flap's effectiveness in treating severe and complex lower extremity deformities. We attempted to use a laparoscopically harvested omental flap in conjunction with a second-stage skin graft to reduce infections during limb preservation, increase flap survival probability, and restore the aesthetic and functional integrity of the affected extremity. Methods: Seventeen patients with severe lower extremity wounds underwent omental flap transplantation and were followed up for 6 to 12 months to check for surgical complications, evaluate cosmetic results, and ensure proper limb function. Results: There were no complications, such as intestinal adhesion, intestinal volvulus, and peritonitis, with any of the omental grafts. The affected extremities were well-functioning and aesthetically pleasing. Conclusion: Laparoscopically harvested omental flap transplantation with skin grafting is an alternative reconstruction technique for severe lower extremity injuries with massive soft tissue loss and exposed bones and tendons.

9.
Medicine (Baltimore) ; 103(3): e36955, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241559

RESUMO

RATIONALE: Hereditary sensory and autonomic neuropathy type IV (HSAN IV) may be misdiagnosed because of low awareness among clinical professionals and overlap with other subtypes of congenital insensitivity to pain (CIP). PATIENT: The patient was a 1-year-and-5-months-old boy whose main symptoms were delayed psychomotor development and recurrent fever. Whole-exome sequencing (WES) revealed a compound heterozygous mutation (c. 1927C > T, c. 851-33T > A) in the NTRK1 gene of the child. Pathological analysis showed decreased autonomic small nerve fibers, sparse hair follicles, and atrophy of the sweat glands. Sweat glands lack innervating nerve fibers. Brain magnetic resonance imaging (MRI) of the patient showed delayed myelination in the brain, slightly enlarged bilateral lateral ventricles, and patchy abnormal signals in the brain. DIAGNOSIS: hereditary sensory and autonomic neuropathy type IV (HSAN IV). INTERVENTION: Inform parents about the illness and take good care of the child. OUTCOMES: The children had less self-harming behavior and no painless fractures during follow-up at 2 years. LESSONS: This report describes the pathological and imaging features and clinical manifestations of a child with HSAN IV in early life to provide a reference for the early diagnosis of the disease. Early diagnosis can help avoid self-mutilation and painless injury and reduce wound infection.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Insensibilidade Congênita à Dor , Comportamento Autodestrutivo , Masculino , Humanos , Pré-Escolar , Lactente , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Insensibilidade Congênita à Dor/diagnóstico , Insensibilidade Congênita à Dor/genética , Fenótipo , Mutação
10.
J Gene Med ; 26(1): e3612, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897251

RESUMO

BACKGROUND: Lung cancer is the second most common malignancy in the world, and lung adenocarcinoma (LUAD) in particular is the leading cause of cancer death worldwide. Endothelin converting enzyme 1 (ECE1) is a membrane-bound metalloprotease involved in endothelin-1 (ET-1) processing and regulates vasoconstriction. However, very few studies have reported the involvement of ECE1 in regulating tumor cell proliferation, and the mechanism remains poorly understood. Therefore, we aimed to determine the role of ECE1 in lung cancer development. METHODS: The Cancer Genome Atlas database and Kaplan-Meier plotter were used to assess the association between ECE1 and lung cancer. The expression of ECE1 was detected using immunohistochemistry staining and western blotting. A variety of in vitro assays were performed to evaluate the effects of ECE1 on the colony formation, proliferation, migration and invasion using ECE1 knockdown lung cancer cells. The gene expression profiles regulated by ECE1 were investigated by RNA sequencing. An immunoprecipitation assay and immunofluorescence assay were used to evaluate the mechanism underlying the regulatory effect of ECE1 on protein kinase B (AKT). The effect of ECE1 on tumor development was assessed by xenografted lung cancer cells in either C57BL/6 mice or nude mice. RESULTS: ECE1 was upregulated in LUAD and correlated with the poor prognosis of patients with LUAD. Functional studies showed that knockdown of ECE1 retarded the progression of tumors formed by lung cancer cells at least partly by inhibiting tumor cell proliferation. Moreover, ECE1 accelerated tumor cell proliferation through promoting AKT activation dispensable of its canonical target ET-1. Mechanically, ECE1 interacted with the pleckstrin homology (PH) domain of AKT and facilitated its translocation to the plasma membrane for activation. Furthermore, the inhibition of AKT activity counteracted the lung cancer cell growth inhibition observed both in vitro and in xenografts caused by ECE1 suppression. CONCLUSIONS: The present study reveals a non-canonical function of ECE1 in regulating AKT activation and cell proliferation, which provides the basis for the development of a novel strategy for the intervention of cancer including LUAD by abrogating ECE1-AKT signaling.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Movimento Celular/genética , Camundongos Endogâmicos C57BL , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
11.
ACS Nano ; 18(1): 809-818, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108268

RESUMO

van der Waals ferroic materials exhibit rich potential for implementing future generation functional devices. Among these, layered ß'-In2Se3 has fascinated researchers with its complex superlattice and domain structures. As opposed to ferroelectric α-In2Se3, the understanding of ß'-In2Se3 ferroic properties remains unclear because ferroelectric, antiferroelectric, and ferroelastic characteristics have been separately reported in this material. To develop useful applications, it is necessary to understand the microscopic structural properties and their correlation with macroscopic device characteristics. Herein, using scanning transmission electron microscopy (STEM), we observed that the arrangement of dipoles deviates from the ideal double antiparallel antiferroelectric character due to competition between antiferroelectric and ferroelectric structural ordering. By virtue of second-harmonic generation, four-dimensional STEM, and in-plane piezoresponse force microscopy, the long-range inversion-breaking symmetry, uncompensated local polarization, and net polarization domains are unambiguously verified, revealing ß'-In2Se3 as an in-plane ferrielectric layered material. Additionally, our device study reveals analogous resistive switching behaviors of different types owing to polarization switching, defect migration, and defect-induced charge trapping/detrapping processes.

12.
Biomed Eng Online ; 22(1): 119, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071319

RESUMO

BACKGROUND: Shigella flexneri (S. flexneri) is a common intestinal pathogenic bacteria that mainly causes bacillary dysentery, especially in low socioeconomic countries. This study aimed to apply cold atmospheric plasma (CAP) on S. flexneri directly to achieve rapid, efficient and environmentally friendly sterilization. METHODS: The operating parameters of the equipment were determined by plasma diagnostics. The plate count and transmission electron microscope were employed to calculate bacterial mortality rates and observe the morphological damage of bacterial cells. Measurement of intracellular reactive oxygen species (ROS) and superoxide anions were detected by 2,7-dichlorodihydrofluorescein (DCFH) and Dihydroethidium fluorescence probes, respectively. The fluorescence intensity (a. u.) reflects the relative contents. Additionally, the experiment about the single effect of temperature, ultraviolet (UV), and ROS on bacteria was conducted. RESULTS: The peak discharge voltage and current during plasma operation were 3.92kV and 66mA. After discharge, the bacterial mortality rate of 10, 20, 30 and 40 s of plasma treatment was 60.71%, 74.02%, 88.11% and 98.76%, respectively. It was shown that the intracellular ROS content was proportional to the plasma treatment time and ROS was the major contributor to bacterial death. CONCLUSION: In summary, our results illustrated that the plasma treatment could inactivate S. flexneri efficiently, and the ROS produced by plasma is the leading cause of bacterial mortality. This highly efficient sterilization method renders plasma a highly promising solution for hospitals, clinics, and daily life.


Assuntos
Disenteria Bacilar , Shigella flexneri , Humanos , Temperatura , Espécies Reativas de Oxigênio , Disenteria Bacilar/microbiologia , Temperatura Baixa
13.
PLoS One ; 18(12): e0295945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127873

RESUMO

Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted by a vector insect, the Monochamus alternatus. The PWN has caused much extensive damage to pine-dominated forest ecosystems. Trunk injection of emamectin benzoate (EB) has been found to be the most useful protective measure against the PWN, due to its low effective dose and long residence time in the field. However, the interactions between EB and the host or the environment remain largely unknown, which limits the efficacy and stability of EB in practical field settings. In this study, we investigated the impact on PWN from EB injection for both adult and young host plants (Pinus massoniana) by taking a multi-omics (phenomics, transcriptomics, microbiome, and metabolomics) approach. We found that EB injection can significantly reduce the amount of PWN in both living adult and young pine trees. Additionally, EB was able to activate the genetic response of P. massoniana against PWN, promotes P. massoniana growth and development and resistance to Pine wilt disease, which requires the presence of PWN. Further, the presence of EB greatly increased the accumulation of reactive oxygen species (ROS) in the host plant in a PWN-dependent manner, possibly by affecting ROS-related microbes and metabolites. Moreover, we uncovered the function of EB limiting the consumption of P. massoniana by the JPS. Based on biochemical and gut microbial data, we found that EB can significantly reduces cellulase activity in JPS, whose transcription factors, sugar metabolism, and the phosphotransferase system are also affected. These results document the impact of EB on the entire PWD transmission chain through multi-omics regarding the dominant pine (P. massoniana) in China and provide a novel perspective for controlling PWD outbreaks in the field.


Assuntos
Besouros , Pinus , Animais , Espécies Reativas de Oxigênio , Pinus/genética , Ecossistema , Perfilação da Expressão Gênica , Besouros/genética , Antinematódeos/farmacologia , Doenças das Plantas/genética
14.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1266-1269, 2023 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-37848323

RESUMO

Objective: To investigate the feasibility and effectiveness of bilateral facial perforator artery flap in repairing large area defect in middle and lower part of nose. Methods: The clinical data of 18 patients with large area defect in middle and lower part of nose repaired by bilateral facial perforator artery flap between January 2019 and December 2022 were retrospectively analyzed. Among them, there were 13 males and 5 females, the age ranged from 43 to 81 years, with an average of 63 years. There were 3 cases of nasal trauma, 4 cases of basal cell carcinoma, 8 cases of squamous cell carcinoma, 1 case of lymphoma, and 2 cases of large area solar keratosis. The size of the defect ranged from 3.0 cm×3.0 cm to 4.5 cm×4.0 cm; the size of unilateral flap ranged from 3.0 cm×1.3 cm to 3.5 cm×2.0 cm, and the size of bilateral flaps ranged from 3.3 cm×2.6 cm to 4.5 cm×4.0 cm. Results: One patient developed skin flap necrosis after operation, and a frontal skin flap was used to repair the wound; 1 case gradually improved after removing some sutures due to venous congestion in the skin flap, and the wound healing was delayed after dressing change; the remaining 16 cases of bilateral facial perforator artery flaps survived well and all wounds healed by first intention, without any "cat ear" malformation. All 18 patients had first intention healing in the donor area, leaving linear scars without obvious scar hyperplasia, and no facial organ displacement. All patients were followed up 3-12 months, with an average of 6 months. Due to the appropriate thickness of the flap, none of the 18 patients underwent secondary flap thinning surgery. All flaps had good blood circulation, similar texture and color to surrounding tissues, symmetrical bilateral nasolabial sulcus, and high patient satisfaction. Conclusion: The bilateral facial perforator artery flaps for repairing large area defect in middle and lower part of nose can achieve good appearance and function, and the operation is relatively simple, with high patient satisfaction.


Assuntos
Retalho Perfurante , Procedimentos de Cirurgia Plástica , Neoplasias Cutâneas , Lesões dos Tecidos Moles , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Transplante de Pele , Estudos Retrospectivos , Lesões dos Tecidos Moles/cirurgia , Retalho Perfurante/irrigação sanguínea , Artérias/cirurgia , Cicatriz/cirurgia , Resultado do Tratamento , Neoplasias Cutâneas/cirurgia
15.
iScience ; 26(10): 107850, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37752951

RESUMO

The atomically precise metal electrocatalysts for driving CO2 reduction reactions are eagerly pursued as they are model systems to identify the active sites, understand the reaction mechanism, and further guide the exploration of efficient and practical metal nanocatalysts. Reported herein is a nanocluster-based electrocatalyst for CO2 reduction, which features a clear geometric and electronic structure, and more importantly excellent performance. The nanocatalysts with the molecular formula of [Ag17Cu10(dppm)4(PhC≡C)20H4]3+ have been obtained in a facile way. The unique metal framework of the cluster, with silver, copper, and hydride included, and dedicated surface structure, with strong (dppm) and labile (alkynyl) ligands coordinated, endow the cluster with excellent performance in electrochemical CO2 reduction reaction to CO. With the atomically precise electrocatalysts in hand, not only high reactivity and selectivity (Faradaic efficiency for CO up to 91.6%) but also long-term stability (24 h), are achieved.

16.
Tuberculosis (Edinb) ; 143: 102411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748279

RESUMO

OBJECTIVE: To evaluate the application value of nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) technology in the rapid diagnosis of pulmonary tuberculosis (PTB) and its drug resistance. METHODS: From February 2021 to January 2022, respiratory specimens from 214 suspected PTB patients at the First Hospital of Quanzhou were collected. Nucleotide MALDI-TOF-MS and BACTEC MGIT 960 culture methods were used for the detection of Mycobacterium tuberculosis (MTB) and drug resistance to anti-tuberculosis drugs. RESULTS: Compared with culture method, nucleotide MALDI-TOF-MS technology had a sensitivity, specificity, and accuracy of 92.2%, 74.1%, and 82.7%, respectively, for the detection of MTB in respiratory specimens. With clinical diagnosis as the reference standard, the sensitivity and accuracy of nucleotide MALDI-TOF-MS were 82.5% and 86.0%, respectively, which were higher than those of the culture method (69.2% and 78.0%, respectively). The specificity of nucleotide MALDI-TOF-MS was 93.0%, which was slightly lower than that of culture method (95.8%). As for drug resistance, the results of nucleotide MALDI-TOF-MS exhibited good consistence with culture methods for rifampin, isoniazid, ethambutol, and streptomycin. CONCLUSION: Nucleotide MALDI-TOF-MS detection has a good clinical performance for rapid detection of MTB and drug sensitivity to rifampin, isoniazid, ethambutol, and streptomycin directly on respiratory specimens.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Rifampina , Nucleotídeos , Etambutol , Isoniazida , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Resistência a Medicamentos , Estreptomicina
17.
J Am Chem Soc ; 145(33): 18549-18559, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37579341

RESUMO

Organic-inorganic metal hybrids with their tailorable lattice dimensionality and intrinsic spin-splitting properties are interesting material platforms for spintronic applications. While the spin decoherence process is extensively studied in lead- and tin-based hybrids, these systems generally show short spin decoherence lifetimes, and their correlation with the lattice framework is still not well-understood. Herein, we synthesized magnetic manganese hybrid single crystals of (4-fluorobenzylamine)2MnCl4, ((R)-3-fluoropyrrolidinium)MnCl3, and (pyrrolidinium)2MnCl4, which represent a change in lattice dimensionality from 2D and 1D to 0D, and studied their spin decoherence processes using continuous-wave electron spin resonance spectroscopy. All manganese hybrids exhibit nanosecond-scale spin decoherence time τ2 dominated by the symmetry-directed spin exchange interaction strengths of Mn2+-Mn2+ pairs, which is much longer than lead- and tin-based metal hybrids. In contrast to the similar temperature variation laws of τ2 in 2D and 0D structures, which first increase and gradually drop afterward, the 1D structure presents a monotonous rise of τ2 with the temperatures, indicating the strong correlation of spin decoherence with the lattice rigidity of the inorganic framework. This is also rationalized on the basis that the spin decoherence is governed by the competitive contributions from motional narrowing (prolonging the τ2) and electron-phonon coupling interaction (shortening the τ2), both of which are thermally activated, with the difference that the former is more pronounced in rigid crystalline lattices.

18.
J Sep Sci ; 46(17): e2300011, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344998

RESUMO

Although Geng-Nian-Shu has been shown to be clinically effective in perimenopausal syndrome, its active components and mechanism have not yet been elucidated. To demonstrate the mechanism-based biomarkers of Geng-Nian-Shu in treating perimenopausal syndrome, a total of 135 chemical constituents including 52 prototype blood constituents were identified via high-performance liquid chromatography-quadrupole-time of flight/mass spectrometry. Then, network pharmacology showed significant enrichment for the PhosphoInositide-3 Kinase/Akt pathway, suggesting that it may be the main regulatory pathway for the Geng-Nian-Shu treatment of the perimenopausal syndrome. Subsequently, multivariate analysis was performed between the Geng-Nian-Shu sham-treated and Geng-Nian-Shu ovariectomy-treated groups and further screened out 18 prototype blood constituents by correlation analysis with plasma estrogen levels to identify potential biomarkers associated with Geng-Nian-Shu treat the ovariectomy-induced perimenopausal syndrome. Finally, the results of pharmacological experimental verification and Pearson correlation analysis indicated that catalpol, ligustilide, paeoniflorin, and gallic acid were selected as biomarkers of Geng-Nian-Shu which were strongly and positively correlated with PhosphoInositide-3 Kinase/Akt signaling pathway. In this study, based on high-performance liquid chromatography-quadrupole-time of flight/mass spectrometry combined with pharmacodynamics, network pharmacology, pharmacology, and other disciplines, we explored the effects and mechanisms of Geng-Nian-Shu in the treatment of perimenopausal syndrome at multiple levels. Using multiplatform technology to investigate the role of Geng-Nian-Shu represents a new strategy for the selection and verification of biomarkers of Geng-Nian-Shu and provides a basis for further development and utilization of Geng-Nian-Shu.


Assuntos
Medicamentos de Ervas Chinesas , Feminino , Humanos , Medicamentos de Ervas Chinesas/análise , Perimenopausa , Proteínas Proto-Oncogênicas c-akt , Biomarcadores/análise , Fosfatidilinositóis
19.
J Am Chem Soc ; 145(25): 14044-14051, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37315326

RESUMO

Ferroelectricity in two-dimensional hybrid (2D) organic-inorganic perovskites (HOIPs) can be engineered by tuning the chemical composition of the organic or inorganic components to lower the structural symmetry and order-disorder phase change. Less efforts are made toward understanding how the direction of the polar axis is affected by the chemical structure, which directly impacts the anisotropic charge order and nonlinear optical response. To date, the reported ferroelectric 2D Dion-Jacobson (DJ) [PbI4]2- perovskites exhibit exclusively out-of-plane polarization. Here, we discover that the polar axis in ferroelectric 2D Dion-Jacobson (DJ) perovskites can be tuned from the out-of-plane (OOP) to the in-plane (IP) direction by substituting the iodide with bromide in the lead halide layer. The spatial symmetry of the nonlinear optical response in bromide and iodide DJ perovskites was probed by polarized second harmonic generation (SHG). Density functional theory calculations revealed that the switching of the polar axis, synonymous with the change in the orientation of the sum of the dipole moments (DMs) of organic cations, is caused by the conformation change of organic cations induced by halide substitution.

20.
ACS Appl Bio Mater ; 6(9): 3433-3440, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084245

RESUMO

Photothermal therapy is a promising light-based medical treatment that relies on light absorption agents converting light irradiation into localized heat to destroy cancer cells or other diseased tissues. It is critical to enhance the therapeutic effects of cancer cell ablation for their practical applications. This study reports a high-performance combinational therapy for ablating cancer cells, including both photothermal therapy and chemotherapy to improve therapeutic efficiency. The prepared AuNR@mSiO2 loading molecular Doxorubicin (Dox) assemblies were highlighted by merits of facile acquisition, great stability, easy endocytosis, and rapid drug release in addition to improved anticancer capability upon irradiation with a femtosecond pulsed near-infrared (NIR) laser, where AuNR@mSiO2 nanoparticles afforded a high photothermal conversion efficiency of 31.7%. Two-photon excitation fluorescence imaging was introduced into confocal laser scanning microscope multichannel imaging to track the drug location and cell position in real time for monitoring the process of drug delivery in killing human cervical cancer HeLa cells and then to realize imaging-guiding cancer treatment. These nanoparticles exhibit widespread potential in photoresponsive utilizations including photothermal therapy, chemotherapy, one- and two-photon excited fluorescence imaging, and 3D fluorescence imaging and cancer treatment.


Assuntos
Ouro , Nanotubos , Humanos , Células HeLa , Liberação Controlada de Fármacos , Dióxido de Silício , Fototerapia/métodos , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...